Signal transduction pathways that inhibit hepatitis B virus replication
نویسندگان
چکیده
منابع مشابه
Signal transduction pathways that inhibit hepatitis B virus replication.
The replication of hepatitis B virus (HBV) in hepatocytes is strongly inhibited in response to IFN-alpha/beta and IFN-gamma. Although it has been previously demonstrated that IFN-alpha/beta eliminates HBV RNA-containing capsids from the cell in a proteasome-dependent manner, the precise cellular pathway that mediates this antiviral effect has not been identified. Because IFN-induced signal tran...
متن کاملRegulation of hepatitis B virus replication by the phosphatidylinositol 3-kinase-akt signal transduction pathway.
The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway is one of the major oncogenic pathways and is activated in many types of human cancers, including hepatocellular carcinoma. It can also be activated by the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein. In the present study, we set out to determine the regulatory effects of this pathway on the replicatio...
متن کاملInterferon-regulated pathways that control hepatitis B virus replication in transgenic mice.
We previously showed that the intrahepatic induction of cytokines such as alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) inhibits hepatitis B virus (HBV) replication noncytopathically in the livers of transgenic mice. The intracellular pathway(s) responsible for this effect is still poorly understood. To identify interferon (IFN)-inducible intracellular genes that could...
متن کاملVirus interactions with human signal transduction pathways
Viruses depend on their hosts at every stage of their life cycles and must therefore communicate with them via Protein-Protein Interactions (PPIs). To investigate the mechanisms of communication by different viruses, we overlay reported pairwise human-virus PPIs on human signalling pathways. Of 671 pathways obtained from NCI and Reactome databases, 355 are potentially targeted by at least one v...
متن کاملEngineering Signal Transduction Pathways
Cells respond to their environment by sensing signals and translating them into changes in gene expression. In recent years, synthetic networks have been designed in both prokaryotic and eukaryotic systems to create new functionalities and for specific applications. In this review, we discuss the challenges associated with engineering signal transduction pathways. Furthermore, we address advant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2004
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0308340100